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Because of the inherent nonlinearity in the boundary conditions on the free surface, 
water waves with frequencies from neighbouring parts of the sea spectrum interact 
and force low-frequency oscillations at the second order. Since the physical pheno- 
menon involves vastly different timescales, the perturbation method of multiple 
scales ia applied here to a rectangular cylinder in beam seas. It will be shown that 
at the second order there are two kinds of long waves; one is locked to the envelopes 
of the incident, reflected and transmitted short waves, while the other propagates 
away from the body at the long-wave velocity (gh)t. The latter contributes to the 
damping of slow-drift oscillations of the body. Analytical results for the displace- 
ment amplitudes of the slow sway and for the radiated long waves are derived. The 
transient evolution due to incident envelopes of finite and semi-inhite duration is 
also predicted. 

1. Introduction 
It is well known that, in an irregular sea with a narrow-banded spectrum, 

second-order effects contribute an exciting force with low frequencies (Hsu & 
Blenkarn 1970; Remery & Hermans 1971 ; Newman 1974). As the natural frequency 
of the moored vessel may also be low, slow-drift oscillation can be excited to cause 
significant strain in the mooring lines or to affect the dynamic positioning of a floating 
platform. 

Several authors have focused their attention on the long-period exciting force on 
a fixed body in a narrow-banded stationary sea. Newman has shown that the slowly 
varying force corresponding to the small frequency difference wm -wn, when w, and 
0, are two neighbouring frequencies in the spectrum, can be approximately related 
to the constant drift force for w,-wn. Alternatively, Pinkster (1976, 1980) and 
Faltinsen & Lsken ( 1978) have adopted a straightforward perturbation approach 
which, in principle, can yield the full second-order solution involving high (sum) and 
low (difference) frequencies. This is of course necessary if all parts of the second-order 
theory are desired, or when the sea spectrum is broad. Despite an ingenious use of 
Green’s formula to avoid the full solution, however, the numerical task for practical 
problems appears to be complex. 

Since, among the second-order effects, one is often interested primarily in the 
slow-drift oscillation, the contrasting frequencies suggest the use of the perturbation 
method of multiple scales. Steps have been taken in this direction by Molin & Bureau 
(1980) and Triantafyllou (1982) (see also a recent review by Ogilvie 1983). In their 
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analysis the concept of multiple scales was applied only to time but not to space. It 
is well known for free waves that slow modulation in time is accompanied by slow 
modulation in space in the plane of propagation. One should therefore expect the 
radiation of long waves if the depth is finite. This feature can be most effectively 
treated by the multiple-scale analysis. 

In  this paper we apply multiple-scale expansions to both space and time to a 
two-dimensional body moored in beam seas. After specifying the slowness of 
modulation, we not only alleviate the need for analysing the short-scale problem, but 
extend the long-scale problem to include its transient evolution. Thus the incident 
wave envelope can be finite or semi-infinite in duration. The initial growth, the 
approach to quasi-steady state, or the final decay are studied through several 
examples. In addition, two kinds of long waves, one propagating at the group velocity 
and the other at (gh)f, are shown to be present. The concept of radiation stress, which 
is well known in coastal oceanography and engineering, is also brought into the 
present problem of wavebody interaction. 

In order to illustrate the analytical procedure and to examine the physics clearly, 
we have chosen a very simple geometry and assumed the drift displacement to be 
small. Large displacement of more practical bodies will be studied along similar lines 
in the future. 

2. Perturbation equations 
To demonstrate the analysis, we examine a two-dimensional geometry for which 

the explicit solution can be simply obtained. Consider a rectangular cylinder sliding 
without friction on a horizontal sea bottom of depth h (figure la). No fluid is 
permitted to pass above or beneath the cylinder. Potential flow is assumed. The 
velocity potential $(x, 2, t )  is governed by the Laplace equation 

4zz+9,, = 0 ( - h  < z < 0, (2.1) 

9,=0 ( z = - h ) .  (2.2) 

with ( )z denoting partial differentiation. On the sea bottom the normal flux vanishes : 

On the free surface the kinematic condition requires 

s t  + 5, 9, = 4 z  (2 = 0, 
while the dynamic condition requires 

qY+k+t(4:+92) = 0 (2 = 0. (2.4) 

The rectangular body is assumed to have mass M, and its horizontal movement is 
partially constrained by an elastic mooring system of spring constant K. Because 
there is no communication between the fluids on both sides of the body, the width 
of the body can be eliminated from the mathematical discussion by using two 
different coordinate systems: (x+, z) for x+ = x--a > 0, and (x-, z )  for x- = x+a < 0. 
More simply, we may drop the subscripts + , - and define x = x+ when x > 0 and 
z = x- when x < 0 ; the body is reduced mathematically to a thin plate of finite mass 
(see figure l b ) .  On the body the exact kinematic and dynamic conditions are 
respectively 

(2.5) x, = 9, (z = X ( t ) ) ,  

p ( X - O , z , t )  dz- p(X+O,z , t )  dz = M X , , + R X  (z = X ( t ) ) .  (2.6) 
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F’IGIJRE 1. Coordinates for (a) a regular block and (b)  the equivalent plate. 

The pressure is related to the velocity potential, exactly, by the Bernoulli equation: 

In this paper we allow the body displacement X to be no greater than the wave 
amplitude; the important case where X O(A) will be treated in the future. For small 
wave amplitudes (k,A = O(s) < 1, where E ,  = wavenumber) we carry out Taylor 
expansion about the still-water level a t  z = 0 and combine the two conditions (2.3) 
and (2.4) to get 

+tt +g$, = [ - + ( $ ; + $ l ) + i $ t  4,t] t - ($z $A+ ~ 3 ) .  (2-8) 

Similar expansions of (2.5) and (2.6) about 2 = 0 lead to 

(2.9) 

(2.10) 

where A denotes the difference 

Aj E ~ ( Z  = 0 - ,  t ) - j ( ~  = O +  , t ) .  (2.11) 

Now we assume the incident wavetrain to be nearly periodic at  frequency w and 
slowly modulated. The length- and timescales of the envelope modulation are 
O ( E - ~ )  timest that of 2x/k, and % / w .  Since similar contrast in scales is expected in 

t Strictly speaking, the wave slope and the modulation rate are independent, but the present 
assumption leads to the most interesting situation where nonlinearity and dispersion are 
competitive. 
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the response, we introduce expansions in terms of the fast ( z , z , t )  and the slow 
(zl = ex, t, = ~ t )  variables: 

(2.12) ( A C ,  X) = 4419 Cl, Xl) + E 2 ( $ 2 ,  52,  x2, + . .. , 
with the convention that 

{$n = $n(z, 2, t ,  51, t l ) ,  Cn = Cn(z ,  t ,  z1, t i ) ,  Xn = Xn(t, ti)} = O(1). (2.13) 

To ensure that X = O(E)  we must keep 

(2.14) 

This restriction is satisfied by vessels of ordinary size. Since the slow-drift exciting 
force is of the second order in ko A and the corresponding displacement is allowed 
to be of the first order, we must have a week mooring such that 

R = O(E) = EK, (2.15) 

where K is of order unity. In practice, the mooring system can vary widely and K 
can be of any value. Using (2.11) and (2.13), we obtain, from the Laplace equation 
i n - h < z < O  

$122 + $122 = 0, (2.16~) 

422z + $822 = - 2$122, 9 (2.16b) 

... , 
from the bottom condition on z = -h  

$bl, = $e2 = ... = 0, (2.17) 

and from the free-surface condition on z = 0 

$ltt +9$12 = 09 (2.18a) 

... . 
The kinematic condition on the body (z = 0) leads to 

Xlt = $12, 

Xlt, + x2t = $12, + $22  + Xl~122. 
... . 

The dynamic condition on the body gives 
ro 

(2.18b) 

(2.19 a) 

(2.19 b) 

(2.20 a) 

= M(2X1tt,+X2tt)+KX1. (2.20b) 

Use can be made of (2.19a) to eliminate terms on the left of (2.20b). 
The solution is sought in terms of harmonics with respect to the fast time, i.e. 

(2.21) 
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with #nm = #n*,-m, etc., 

where ( )* denotes the complex conjugate. We now examine each order in turn. 

3. The short-scale motion 
The first-order problem is not affected by the weak spring, so that the horizontal 

motion is unconstrained. The first-harmonic potential #11 obeys the following 
equations : 

# 1 1 2 2 + $ l l Z Z  = 0 ( - h  < z < 01, (3.1) 

(3.2) 
w2 

$ l l z - ~ # l l  = 0 (z  = 0), where u = -, 
B 

$1lZ = 0 (2 = -w, 
-iwX,, = $11, (z = Ok, -h  < z < 0) ,  

In getting (3.5), (3.4) is used. In  addition, the disturbance induced by the incident 
waves must be outgoing at infinity. The solution that satisfies (3.1)-(3.3) and the 
radiation condition can be expressed as follows: 

where 

a0 

(ai-b:) fo(z )  eiko2+ Z b i  fn(z )  e-kmz (z > 0), 

(a; eikoz+b; e-ikoz)fO(z)+ Z -b;  f, eknz 

n-i 
m (3.6) 

(z < O ) ,  
n-i 

(3.7) I fo = 4 2  coshk,(z+h) (h+cr-l sinhakoh)f, 

f,, = 4 2  coSk,(z+h)(h-a-l sin2knh)f, 

$11 = 

with ko tanhk,h = CT, k, tanknh = -u. (3.8) 

a,$ = aof(zl,tl), bof = bof(zl,tl), bnf = b f ( t , ) .  (3.9) 

Note that cfo, fl, fa, . . .} form an orthonormal set in the range - h < z < 0 and that 

The terms associated with a;, b; and a:-b: represent respectively the incident, 
reflected and transmitted waves. The corresponding free-surface displacement of the 
incident waves is 

Cl = Cll e-iot+* = +at expi(koz-wt+6)+*, (3.10) 
which defines the first-order wave amplitude and phase lag 6: 

2iw 
dei8 = -a;fo(0). 

B 
By using (3.4), we find 

a d o ,  tl) = ai (0 ,  ti) = Ao(tl), 

(3.11) 

(3.12a) 

(3.12b) 

(3.12~) 

When (3.6) is substituted into (3.5) and the scalar product of the resulting equation 
is taken with f,, for each n, we get 

A,--B,=---(-B~F,+ 2ip z a0 B ~ F ~ ) F ,  

k0 m-1 
(3.13a) 

10 FLM 151 
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and 

where 

0 0.5 1 .o 1.5 2.0 2.5 3.0 

kLl h 
FIGURE 2. Square of reflection coefficient for a moving 

block for various mass ratios A = M/pha.  

a0 

-B,F,+ z B,F,), 
k ,M m-1 

Fn E J'_,.fn dz* 
0 

The simultaneous equations can be solved to give 

"I-' F F iP, 
B ,  = A,- -+EL+- ano[ k, k, 2p 

(3.13b) 

(3.14) 

(3.15a) 

(3.15b) 

The reflection coefficient may be defined as 

R=IB, /A,I ,  (3.16) 

which is a pure constant. Typical values of R2 are plotted in figure 2. Note that B, 
incorporates waves reflected by the presence, and radiated by the induced motion, 
of the body. Note also that B,(t,)/A,(t,) are independent oft, for all n. The first-order 
first-harmonic amplitude of the body displacement Xll = I X , J d  I is plotted in 
figure 3 for a wide range of k, h and for three values of A E M/ph2.  The weak mooring 
has no effect on the first-order short-scale motion (hence R). 

From (3.12) it  may be shown that 

Re (A,-B,) B: = 0, (3.17 a) 

so that IA,-B,12 = IA,12-lBo12, (3.17 b) 

which implies energy conservation. 
To get the long-scale variation of a, and b, we must examine the second-order 

first-harmonic problem, whose governing equations are 

(3.18) 

#21z = 0 (2 = -h).  J 
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In the region I k, 5 I % 1 and O(z,) = 1 the evanescent modes are insignificant. In order 
that propagating modes may exist, a solvability condition (see e.g. Mei 1983) must 
be satisfied. This leads to 

(3.19) 

(3.20) which imply 

The first-order solution is complete. 

aof = Ao(zl-Cgtl) ,  bof = Bo(zlTCgtl). 

4. The long-scale motion 
To predict the long-scale displacement Xlo(tl) of the body, we only need #lo, Cl, 

being identically zero. From the zeroth harmonic of (2.16a)-(2.19a), the short-scale 
variation of is governed by the following equations: 

(4.1) I 41om + A O Z Z  = 0, 

410z = 0 ( Z  = 0, - h) 

= 0 (z = O + ) .  

Hence 
and the corresponding mean sea level C,, are most simply obtained from the zeroth 
harmonic of the continuity equation 

= q510(z1, tl) is independent of short scales. The long-scale equations for 

and the Bernoulli equation in the region z1 = O( 1). Defining by U the flux normalized 
by the still water depth h, 

we obtain, after expanding the integral, 

hUS0 = w10z1 + (S,: 4112 + *) I 2-0. (4.4) 
Now the quadratic terms are made up of self-products of rightgoing, leftgoing 
(z -c 0 only), and evanescent waves, as well as cross-products of counterpropagating 
waves (z < 0), and of evanescent and propagating waves. The self-products of 
propagating waves (right- or leftgoing) depend on z1 and t , ,  but not on the short scales, 
and are responsible for Products containing evanescent modes die out, while 
cross-products of counterpropagating waves die out upon spatial average, in the 
region z1 = O( 1). If an overbar is used to distinguish the self-product of propagating 
waves and their responses from the rest, then we obtain from (4.2), at the zeroth 
harmonic and third order, 

(4.5) G o t ,  + h4lOZ1 2 1  + (Gl4llZ + *I%, = 0. 
Similarly, from the Bernoulli equation we have 

-!?Lo = ~ l o t , + I + + - ~ ~ 4 1 1 4 l * l z + * ~  (2 = 0) .  (4.6) 

Finally, by differentiation we eliminate from (4.5) and (4.6) to get 

$lotl t ]  - Swlo,, 2, = !G1411% + *)Zl 
-{ I 411% 1% + I 411z I2 - 4411 4:1z + *)It, I z-0 (z1 P 0). (4.7) 

10-2 
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With lengthier algebra, the same governing equation can also be obtained more 
formally at the third order by requiring the solvability of the boundary-value 
problem for $80. 

From the kinematic and dynamic boundary conditions on the body we have 

XIOtl = $102, + $202 + cx:1 $1122 + *I, (4.8) 
0 K 

P 
--&o = P A  I_, dz [$lotl + I4112 l2 + I $112 121 + P A[( -i411 el+ *) +9  I61 121 I2-O' 

(4-9) 
In addition, $lo must satisfy the radiation condition. 

envelope) for z1 > 0. We therefore expect $lo to be of the form 
In view of (3.20), the forcing terms in (4.7) are functions of zl-Cgtl (transmitted 

(4.10) 

The second term on the right is a homogeneous solution representing a long wave 
propagating at the speed (gh):. Similarly, for z1 < 0 the forcing terms depend either 
on zl-Cgtl (incident envelope) or on zl+Cgtl (reflected envelope). We must then 
have 

The particular solutions $g), (a) = I, T or R, can be readily calculated and have the 
following result : 

(4 .12~)  

where $ I = ) a ; 1 2 ,  $ = = I a p ; ( 2 ,  +'R=-IbJ? (4.12b) 

Imposing the initial condition that there is no disturbance at the body before the 
incident envelope arrives, we get 

(4.13) 

For later use we need the long-scale parts 020 and c20. With a little algebra, (4.4) 

$10 = $To(z,- c, 4) + $:O(zl - ( g 4 i  tl) (z1 > 0).  

$10 = $ : 0 ~ ~ 1 - ~ g ~ 1 ~ + $ ~ ~ ~ 1 + ~ , ~ 1 ~ + ~ 1 0 ~ ~ 1 + ~ ~ ~ ~ ~ ~ 1 ~  (21 < 0). (4.11) 

, = p ) L  '"O) [(ki-rz) Cg+2uko], 
q - g h  

0 2  

$&, = 0 at t, = 0, zl = 0. 

The homogeneous solutions $& remain to be determined. 

gives 1 m = $%, +% [&L %)* + * L o  

= $ ~ L , + @ " ) Q ~ ~ ~ ( O )  2uko 2 for (a) = I ,T ,R.  

When (4.12) and (4.14) are combined, we obtain 

where 

(4.14) 

(4 .15~)  

(4.15b) 

(4.15 c) 

(4.16) 

is the z-component of the radiation stress in a progressive wavetrain with the phase 
function 6. On the two sides of the body the total drift velocities are 

020 = uaJ+ Q+ Ui0 (zl < O ) ,  (4.17 a)  

u20 = Po+ Ut0 (z > 0). (4.17b) 



Slow-drift motion of a two-dimemiowl block in beam 8 m  287 

The corresponding mean sea level can be decomposed similarly, with 

(4 .18~)  

(4.18b) 

(4 .18~)  

which follows from continuity. For unidirectional waves, formulae corresponding to 
(4.15) are well-known (Longuet-Higgins t Stewart 1964). It is worth pointing out 

h -  
and Sf,=k(,,,tu&,, 

that C o - S E l =  go (4.19) 
for z1 = 0 and all t,  > 0. 

the body. 
To find $&,, and hence c&, and U&,, we must turn to the boundary conditions on 

Integrating the kinematic boundary condition (2.19) from --h to 0 and using 
0 0 

1-h -h 
41122 dz = - J 41122 dz = - C411Iz-0, 

We now insist that #zo is bounded aa I x I +a( I x1 I 4 1 still), implying that all the 
long-spatial-scale motion is taken up by Then the integral in (4.20) must balance 
the short-scale part (evanescent modes) of the quadratic terms, i.e. 

(4.21) 

This can be more formally deduced as follows. The short-scale dependence of q520 is 
governed by the following conditions : 

1 
XIOtl = 4102, +& [iw411%+ *1121+m,t-o* 

(4.22) I A022 + 4eozz = 09 

4 2 0 2  = - (iw411 k+ *)z (2 = Oh 
1 
9 

#202 = 0 (Z = -h ) .  
Consider a control volume to the right of the body and bounded by the horizontal 
lines z = 0 and z = -h, and by the vertical lines z = 0 and z+a ,  the last of which 
is in the region O(q) 4 1 but outside the influence of the evanescent modes, i.e. 
ko I x I % 1. Applying Green’s formula to (or any constant) and we get 

1 

2-0 z*m 9 

0 JO, $zozdZ I = j+ Aozdz I +-~[(-i~4114:,2+*)12-0~~50m- (4.23) 

To avoid linear growth of q5eo in x we discard the first term on the right, yielding 

1 

9 (4.24) 
= -- [-iw~ll~:2+*12*,,2-0. 

2-0 9 

Similar reasoning for a control volume to the left of the body gives (4.24) also, with 
the right-hand term above being evaluated at z+- co. Hence (4.21) follows. 

The second term on the right of (4.21) can be computed for both z+k co to be 
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Using (4.4) and (4.24), we can write 

qo+ u;+ vgo (x = 0-),  

qo+ ui0 (x = O + ) .  
(4.26) & O t l  = { 

In view of (4.18), we further have 

(4.26a) 

(4.26 b )  

Note that g& = -g& (zl = 0) (4.27) 

because of (4.19). 

cll, with the result 

Now, 

The dynamic condition (4.9) may be simplified after using the solutions for #11 and 

(4.28) 
K C 
- Xlo = - h A#lot, + -$ R2gd2. 
P 

where (4.9), (4.11) and (4.18) have been invoked. The terms involving #g) and a) 
cancel with the last term in (4.28), so that 

With the help of (4.25), oi0 and gio are eliminated, yielding finally 

(4.31) 

where S = S( - C t ). This is the differential equation for the slow sway of the body. 
g 1. 

The first term signifies the effect of radiation damping, the second term the effect 
of mooring, and the third term, the wave momentum flux. Because of the slow motion, 
inertia is ineffective. 

The general solution to (4.31) is easily found: 
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(4.33) 

To get c~ for any x- < 0, we simply replace t,  by t,  + z,/(gh)f in every term of (4.26a). 
Similarly, - for all x1 > 0, we replace all t ,  by t,  - z,/(gh)i in every term of (4.263) to 
get c,',. 

We can see immediately that, if the mooring stiffness K increaees, i t  takes less time 
for the slow motion to reich equilibrium under persistent forcing, or to decay when 
forcing is removed. 

5. Specialcases 
Let us specify the incident envelope to be such that 

A sinat, (0 < t ,  < T,), 
0 otherwise, 

ai(0,  t,) = A, = 

where A  ̂ is the maximum amplitude of the incident-wave potential; then the slow 
displacement is 

where 

and 

(5.4) 

(5.5a) 

(5.5b) 

Note that x,, is independent of 9, is inversely proportional to the spring constant 
K, and is positive. Figure 3 shows its dependence on k, h and on A. Let us consider 
three subcases. 

5.1. A 8 i n w d l  envelope 
If we let Tl.f 00 in (5.1) then the incident wave envelope is sinusoidal for all t ,  < 00. 

The limit for quasi-steady state at, 9 1 is 

where 7 is the phase angle: 

(5.6b) tan7 E-. 

The ratio fl/Q measures the importance of mooring relative to radiation dam ing. 
Thus X,, oscillates about the mean -&,. In  figure 3, the dimensionless 9!,, = 
x l , h / d s  is plotted for three values of A. For comparison the first-order high- 
frequency displacement X,, is also shown. Relative to the mean, the amplitude of 

2 9  

B 

the oscillatory part is 
[l+(?y]'. (5.7) 
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0 '  0.5 1.0' 1.5 2.0 2.5 3.0 

FIQURE 3. Normalized amplitudes of the high frequency displacement Xll = X 1 J d  and one-half of 
the normalized drift displacement a t  steady state for a uniform wavetrain -9?,o = xl0 h / d S  
(see (5.4)). A = 0.5, 1, 2. The elastic mooring constant is K = Pgh. For comparison, $lo of (5.11) 
is also plotted. 

ko h 

0.6 

XI0 

0.4 

0.2 

0 0.5 1 .o 1.5 2.0 2.5 3 .O 
Q t I h  

FIQURE 4. Transient slow displacement -Zl0 of the body due to various types of incident wave 
envelope : (a) a sinusoidal envelope starting from rest; (b) a uniform envelope starting from rest; 
(c) a pulse envelope. For all cases, f2 = o, K = pgh, M = phz. 

which decreases monotonically from 1 to 0 as /?/a increases. Thus for tighter mooring 
the body wanders less. A typical history of X,,( t ) ,  normalized by &/h, is shown by 
curve (a) in figure 4. Throughout figure 4 we have chosen the modulation frequency 
to be B times &short-wave frequency, namely B = o. We have also set A = 1 and 
R = EpSh. 

The reflected 5; and transmitted Go travel outwards at the group velocity. Their 
amplitudes depend only on R, and are plotted in figure 5 (a) for three different values 
of A. The radiated long waves, which travel at the speed (gh)!, depend further on 
K through Xlot,; their amplitudes are equal by virtue of (4.27), and are plotted in 
figure 5 (b) only for K = pgh. 
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FIGURE 5. (a) Normalized amplitudes of the long waves accompanying the incident group &, the 
reflected group c& and the transmitted group go. (b)  Normalized amplitude of the radiated long 
waves travelling at the speed (gh)f to the right c,& and to the left c;. Normalization length is d z / h .  

5.2. A constant envelope 

If we let the incoming wave have the form 

we get in (4.31) a constant forcing term when t, > x/2Q, and the solution tends 
asymptotically to x,, = -29,, as follows: 

For 0 < t, < x / 2 Q  the solution Xlo(t,) is still given by (5.2). Note that X,, is nega- 
tive, implying that the drift displacement is opposite to the direction of the incident 
waves. 
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When a cylinder is floating or immersed so that fluid is allowed to pass from one 
side to the other, the drift force due to normally and steadily incident waves is known 

pg22R2Cg/C (5.10) to be 

and is in the same direction as the incident waves (see e.g. Longuet-Higgins 1977). 
The corresponding displacement is just 

xlo = pg22R2Cg/CK. (5.11) 

It is different both in sign and in magnitude (see figure 3) from - 2&,, the steady-state 
limit of X,, (see (5.9)). Does this contradict our result? 

Observe first that (5.11) can be got from (4.28) if one sets 

Adlot, = 0. (5.12) 

In the long-time limit of a uniform wavetrain, the long wave described by becomes 
a steady current. For a two-dimensional body that does not prohibit steady flow of 
water from one side to the other, (5.12) holds when viscous effects are ignored. Now, 
in the present example, A$lot, does not vanish; indeed, it also contributes a new part 
in the jump of mean sea level across the body, since 

9 4 2 ,  = -A$1ot1 - A[ I A l X  l2 + I $112 l2 - 4#11$?12 + *)I. (5.13) 
~- 

The second part A[ 3 above can be calculated 

(5.14) 

which is precisely the mean-sea-level change across a two-dimensional body if fluid 
passage is allowed (Longuet-Higgins 1977). 

To confirm our result, let us give a more physical derivation of the steady drift 
force on a fixed plate that seals off all communications between two fluid regions x > 0 
and x -c 0. We assume that the envelope of the incident wavetrain grows steadily 
from zero to a constant value. The fluid on the right is never disturbed. In the fluid 
on the left the steady-state spatial average of the normal radiation stress in the 
standing wave is known to be 

(5.15) 

The steady-state mean setdown is also twice that of the incident progressive wave, 
so that the corresponding hydrostatic pressure is 

- 2 8  
PgC20 = - 1 - C2,lgh. 

The sum of the two gives the drift force on the plate as tl+-cO : 

cg 
- 1  = - 2 8  P9Lo + RXZ = - " (1 - G/gh ) 1 

(gh-CJ* 

(5.16) 

(5.17) 

On the other hand, if we take t ,  +OO in (5.9) and R = 1 in (5.4), we get the steady-state 
displacement whose product with K is precisely equal to the steady-drift force given 
by (5.17). Thus the mean setdown on the upwave side is responsible for the negative 
drift force. 

In  figure 4 the typical transient motion Xl,( t , )  is plotted as curve (b) for the case 
where the incident envelope becomes uniform after the first peak at  at, = +x. 
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FIGURE 6. Effects of elastic mooring constant on the transient slow displacement -XI, of the 
body due to a wave packet for M = phs and k,, h = 1.25. 

I I I I I I I I  
- 5  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
0 5 10 15 

+O 

+5 

+ 10 

+ 15 

+ 20 

+ +25 

yc 

V - 
V 

FIGURE 7. Scattering and radiation of long waves due to an 
incident wave packet; k, h = 1.26, A = 1, K = pgh. 

5.3. A pulse envelope 
Let the pulse envelope have the total duration T, = n /a .  After the pulse expires 
(Sat, > x), slow sway of the body gradually attenuates, as shown by curve (c) in figure 4. 
The rate of attenuation increaaes with K through /3; see (5.3). The maximum of 
Xlo(t,) lags behind the peak of the incident-wave envelope at Sat, = in. This is due 
to the time constant 1/p a 1/K. 

To see the effect of the mooring force, we plot in figure 6 the effect of p/Q for the 
same wave packet. For smaller /3/Q (or K), the maximum displacement is greater 
but is realized later. 

The long waves are particularly interesting for this case. As shown in figure 7, Eo, 
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which accompanies the incident-wave packet, is a solitary depression (setdown) 
travelling at the group velocity. The reflected and transmitted wave packets are a150 
accompanied by setdowns tg and go, whose amplitudes are simply related to the 
reflection coefficient R. Ahead of them are the two long waves g,f, travelling at speed 
(gh)k Because Xlo(t) is pulselike, XIOtl and t,f, must have points of inflection (cf. (4.26)). 

6. Concluding remarks 
By a multiple-scale analysis, we have been able to separate the low-frequency part 

of the second-order motion of a moving block from the high-frequency part. Because 
of the analytical simplicity, the physics of the body motion and the associated wave 
dynamics are now more easily understood. For two- or three-dimensional floating 
bodies of arbitrary shapes and a limited draught, our approach should offer similar 
advantages, although some numerical computationisneeded. Forshipsandtension-leg 
platforms, the case of large drift displacement (drift velocity comparable to wave 
orbital velocity) is of interest ; both full physical understanding and an effective 
method of analysis are still lacking. 

Preliminary results of this paper were presented at the International Workshop 
on Ship and Platform Motions at Berkeley on 26-28 October 1983. This research has 
been sponsored by the Office of Naval Research (Contract N00014-BO-C-0531) and 
the National Science Foundation (Grant MEA 77-17817-AO4). 
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